Preparation and reactions of half-sandwich rhenium nitrosyl complexes containing a tethered amino ligand

Tein-Fu Wang *, Ching-Yih Lai, Yuh-Sheng Wen
Institute of Chemistry, Academia Sinica, Taipei, Taiwan

Received 21 February 1996; in revised form 3 April 1996

Abstract

The aminorhenium nitrosyl complex $\left.\left[\eta^{5}: \eta^{\prime}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{\left(\mathrm{CH}_{3}\right)}\right)_{2} \mathrm{Re}(\mathrm{NO})(\mathrm{CO})\right]^{\prime} \mathrm{BF}_{4}$ (5a), in which the ligating amino group was connected to the cyclopentadienyl ring, was prepared by reacting the $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Re}(\mathrm{NO})(\mathrm{CO}) \mathrm{Br}$ (4) with AgBF_{4}. Reaction of 5 a with alkylmetal reagents provided the acyl complex $\eta^{5}: \eta^{1}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \operatorname{Re}(\mathrm{NO}) \mathrm{COR}(8)(\mathrm{R}=\mathrm{n}$-butyl, methyl, ethyl, isopropyl, benzyl). Solid state structures of $\mathbf{5 b}\left(\mathrm{X}^{-}=\mathrm{BPh}_{4}^{-}\right)$and the acetyl complex $\mathbf{8 b}$ were characterized by single-crystal X -ray inalyses.

Kcywords: Rhenium: Cyclopentadienyl: Nitrosyl; Amine; Chelation: Acyl

1. Introduction

Phosphine ligands have been widely used in organometallic chemistry [1]. However, the isoelectronic species, amines, have received only slight attention [2]. For instance, in the area of half-sandwich rhenium complexes, a vast and rapidly expanding chemistry was based upon the chiral fragment $[\operatorname{ReCp}(\mathrm{NO})$ $\left.\left(\mathrm{PPh}_{3}\right)\right]^{+}$, which contains a triphenylphosphine ligand [3]. Complexation of this fragment with carbonyls [4] and hydrocarbyls [5] has been investigated extensively. Relatively little was known about the chemistry involv. ing amino ligands [6].

Unlike the other members of Group 15, amine has no π-acceptor capability. Therefore, amine coordinates only weakly to low-valent transition metals and forms relatively labile complexes [2]. Through intramolecular chelation, we have prepared some stable amino group chelation complexes of manganese [2c] and molybdenum [2d]. It might be of interest to obtain some rhenium nitrosyl complexes containing an amino ligand and examine their properties and reactions. In this report, we would like to present some syntheses and reactions of complexes of the type $\operatorname{ReCp}(N O)\left(\mathrm{NR}_{3}\right) \mathrm{L}$, in which the

[^0]amino group links intramolecularly to the cyclopentadienyl ring.

2. Results and discussion

We have reported [7] that the lithium salt of the heterobifunctional compound $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{3}$ reacts with rhenium pentacarbonyl bromide to provide the half-sandwich complex ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$)Re$(\mathrm{CO})_{3}$ (1) in 62% yield (see Schense 1). Having a pendent amino group on the cyclopentadienyl ring. complex 1 serves as our starting point for elaboration of amino group chelation complexes.

2.1. Preparation of rhenium bromide 4

The literature reported [8] transtormation of Cp unsubstituted rhenium tricarbonyl $\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}\left(\mathrm{CO}_{3}\right.$ to rhenium bromide ($\eta^{5} \mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Re}(\mathrm{NO})(\mathrm{CO}) \mathrm{Br}$ was followed by some modifications. Reaction of 1 with nitrosyl tetrafluoroborate $\left(\mathrm{NOBF}_{4}\right)$ gave the rhenium nitrosyl complex 2 (Scheme 1). Two equivalents of NOBF_{4} are required for this reaction. One equivalent of NOBF_{4} reacted with the amino group to form presumably an N -nitrosonium adduct. The other equivalent of NOBF_{4} then reacted with the rhenium center to give the desired nitrosyl complex. The actual form of the amino group

Scheme 1.
and the NOBF_{4} adduct was not characterized. However. the amino group could be liberated in the next reaction. Treatment of 2 with a large excess of triethylamine in wet acetone provided rhenium hydride 3. Use of a large quantity of triethylamine is essential for complete liberation of the amino group. Bromination of 3 with N bromosuccinimide afforded rhenium bromide 4 in a total of 36% yield. Infrared spectra (v_{No} and v_{co}) of 2 . 3 and $\mathbf{4}$ are very similar to their corresponding Cp unsubstituted complexes. The rhenium center is chiral for 3 and 4. Therefore, the Cp protons of both 3 and 4 split as a result of diastereotopism in the 'H NMR spectra. Bromide 4 is a red liquid and can be bandled under air for I h without noticeable decomposition.

2.2. Preparation of chelation complexes

Removal of the bromide ion from rhenium bromide 4 with AgBF_{4} resulted in amino group coordination to give complex 5a (Scheme 2). In contrast, removal of a carbon monoxide by treating the bromide 4 with one
equivalent of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NO}$ provided bromide 6. Both 5 a and 6 were converted to the acetonitrile complex 7 by reaction of 5 a with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NO}$ and 6 with AgBF_{4} respectively in $\mathrm{CH}_{3} \mathrm{CN}$.

Upon chelation, the amino group donates electrons to the metal. This would cause reduction of the electron density on the methyl group. Therefore, in the ${ }^{1} \mathrm{H}$ NMR spectra the methyl groups would appear at lower field position than that of the non-chelate one. In addition. owing to the chirality in the metal center, the $\mathrm{N}, \mathrm{N}-\mathrm{di}-$ methyl groups become magnetically non-equivalent. Therefore, it is not difficult to know whether the amino group is ligated or not. For instance, the N.Nodimethyl groups of the chelation complexes appeared at 83.73 and 3.48 for 5a: 8.3 .25 and 3.04 for 6; $8 \quad 3.32$ and 3.11 for 7, compared with the sole resonance at the higher field position (82.26) of the N.N-dimethyl groups of the non-chelute eomplex 4.

Complex 5a was converted into the corresponding tetraphenylborate $\mathbf{5 b}$. The solid state structure of $\mathbf{5 b}$ was then subjected to a single-crystal X-ray diffraction study.

6
Scheme 2.

Fig. I. ortiep drawing of $\left[\eta^{5}: \eta^{1}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{2}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Re}(\mathrm{NO})\right.$ $(\mathrm{CO})]^{+} \mathrm{BPh}_{4}$ (5b). The BPh_{4} anion is omilled for simplicity.

Fig. I shows that the amino group is coordinated to the metal with a bond length of $2.177 \AA$ (see Table 1). Both metal-carbonyl and metal-nitrosyl are in linear geometry, consistent with the bond angles $\mathrm{Re}-\mathrm{C}(1)-\mathrm{O}(1)$ (172.5°) and $\operatorname{Re}-\mathrm{N}(1)-\mathrm{O}(2)$ (177.0 0°). The torsion angles 165.8° for $\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$ and -166.8° for $C(7)-C(2)-C(3)-C(4)$ suggest that the $C(2)-C(7)$ bond of the side chain is bent about 13.7° away from the cyclopentadienyl plane. The torsion angle -3.0° for $N(2)=R e=C(2)-C(7)$ indictues that the $R e-N(2)$ and $\mathrm{C}(2)-\mathrm{C}(7)$ bonds are cophamar.

2.3. Electropinilic reactions of $5 a$ with alkymetal reagems

Reaction of cationic rhenium carbonyl 5a with alkyl nucleophiles occurred at the carbonyl carloon to provide

Scheme 3.
acyl complexes 8. For instance, 5 a reacted with n-butyllithium to provide the rhenium valeryl complex 8a (see Scheme 3). Reaction of 5 a with alkyl Grignards (methyl. ethyl, isopropyl and benzyl) also gave rhenium acyl complexes ($8 \mathrm{~b}-\mathbf{8 e}$) in comparable yields ($56-78 \%$). Infrared spectroscopic study showed that the nitrosyl stretchings of 8 appeared at lower freguencies between 1618 and $1614 \mathrm{~cm}^{-1}$ relative to that of 5 a (1743 cm^{-1}). The stretching frequency of the acyl carbonyl appeared between 1524 and $1517 \mathrm{~cm}^{-1}$ for 8, compared with $2000 \mathrm{~cm}^{-1}$ for the terminal carbonyl of 5a. Being a neutral complex, the amino group of 8 donates fewer electrons to the metal relative to that of the cationic complex 5a. Therefore, the chemical shifts of the dimethyl groups of 8 would appear at higher field than that of 5a. Indeed, the N, N-dimethyl group displayed at $\delta 3.23$ and 3.03 for $8 \mathrm{a}-8 \mathrm{~d}$ and $\delta 3.08$ and 2.81 for 8 e . compared with 83.73 and 3.48 for $5 a$.

The solid state structure of 8b (Fig. 2) shows that an acyl ligand was bonded to the thenium with a bond length of $2.073 \AA$ (see Table 2). The amino group coordinated to the rhenium with a bond length of 2.198 \AA, slight tonger ($0.021 \AA$) than that of 5 bb . The torsion angles $16.3 .8^{\circ}$ for $\left(\times(6)\right.$ ($(1)-C(2)-C(3)$ and -163.4° for $\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ suggest that the $\mathrm{C}(1)-\mathrm{C}(6)$ bond of the side chain is bent about 16.4° away from the cyclopentadienyl plane. It is worth noting that the

Table 1
Selected bond lengths (A°) bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ in complex 5)

Re-N(1)	1.8.32(6)	$\mathrm{N}(2)-\mathrm{C}(\mathrm{K})$	1.501(8)
Re-N(2)	$2.177(5)$	$\mathrm{N}(2)-\mathrm{C}(9)$	1.51()(7)
Re-C(1)	1.857(6)	$\mathrm{N}(2)-\mathrm{C}(10)$	1.492(8)
Re-C(2)	$2.271(6)$	O(1) r(1)	$1.141(8)$
Re $C(d)$	$2.262(6)$	C(2)-C(7)	1.530) ${ }^{1.59}$
$\mathrm{N}(1)-\mathrm{O}(2)$	$1.167(7)$	$C(7)-C(8)$	1.498(11)
$N(1)-R e-N(2)$	98.54(20)	$\mathrm{Ke}-\mathrm{C}(1) \mathrm{O}(1)$	172.5(6)
N(1) WRe - C (1)	936031	$\mathrm{Re} \mathrm{N}(2)-\mathrm{C}(\mathrm{X})$	108.6(3)
$\mathrm{N}(2) \sim \mathrm{Rc} \cdot \mathrm{C}(1)$	$97.94(22)$	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(10)$	104.6(5)
$\mathrm{Re}-\mathrm{N}(1)-\mathrm{O}(2)$	177 λ (6	C(3)-C(2)-C(7)	123.1(6)
$C(6)-R c-N(1)-(12)$	3,k(3)	$C(4)-\mathrm{Re}-\mathrm{N}(2)-\mathrm{C}(8)$	$2.113)$
$C(3)-R(2) N(2)-C(8)$	$-2.9(3)$	$\mathrm{C}(6)-\mathrm{Re}-\mathrm{N}(2)-\mathrm{C}(10)$	177. ${ }^{(17)}$
$C(5)-R e-N(2)-C(10)$	173.9(4)	$\mathrm{N}(2)-\mathrm{Rc}-\mathrm{C}(6)-\mathrm{C}(5)$	-175.3(5)
$\mathrm{N}(2)-\mathrm{Re}-\mathrm{C}(2)-\mathrm{C}(7)$	$-3.0(3)$	$C(7)-C(2)-C(3)-C(4)$	-166.8(8)
$N(1)-R e-N(2)-C(10)$	10.8(3)	$C(7)-C(2)-C(6)-C(5)$	165.8(8)

Fig. 2. ontze drawing of $\eta^{5}: \eta^{1} \cdot \mathrm{C}_{5} \mathrm{H}_{\downarrow} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right), \mathrm{Re}(\mathrm{NO})$ $\mathrm{COCH}_{1}(8 b)$.
carbonyl group and the $\mathrm{Re}-\mathrm{NO}$ bond are coplanar (-179.2° for $\mathrm{N}(1)-\operatorname{Re}-\mathrm{C}(10)-\mathrm{O}(2)$). Similar to complex 5b, the $\mathrm{C}(1)-\mathrm{C}(6)$ and $\mathrm{Re}-\mathrm{N}(2)$ bonds are also coplanar.

Complex 8 showed reasonable stability as it could be manipulated in solution under air for a short period of time without noticeable decomposition. Precipitations would appear if the solution was allowed to stay at room temperature under air for more than I h.

3. Conclusion

We have demonstrated that the amino group with a two carbon tether could easily be ligated to rhenium nitrosyl complexes. The resulting aminorhenium complex reacts with alkylmetal reagents to provide acyl complexes. The corresponding triphenylphosphine com-
plex does not show this property. Complex 5a reacted with NaBH_{4} to provide 3 only. However, the terminal CO of the corresponding triphenylphosphine complex could be reduced to a methyl group [3] by treatment with NaBH_{4}. Obviously, the properties of aminorhenium and phosphinerhenium complexes may be quite different. Further exploration of the properties and reactions of the aminorhenium complexes is underway.

4. Experimental section

Reactions that required anhydrous conditions were performed under an argon atmosphere by use of Schlenk techniques. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyls; methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and acetonitrile were distilled from CaH_{2}. The following chemicals were used as received: methylmagnesium chloride, ethylmagnesium bromide, isopropylmagnesium chloride and benzylmagnesium chloride (Aldrich): NOBF_{4} (Strem); "BuLi, N -bromosuccinimide and AgBF_{4} (Merck). Anhydrous ($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{NO}$ was obtained from $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NO} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Aldrich) by the literature procedure [9]. Infrared solution spectra were recorded on a Perkin-Elmer 882 infrared spectrophotometer using 0.1 mm cells with CaF_{2} windows. Melting points were determined using a Yanaco model MP micro melting point apparatus and were uncorrected. 'H NMR (200 or 300 MHz) and ${ }^{13} \mathrm{C}$ NMR (50 or 75 MHz) were obtaned with a Bruker AC-200 FT or a Bruker $\mathrm{AC} \cdot 300 \mathrm{FT}$ spectrophotometer. On the assignment of IH and "C NMR dati, the carbon bound to the nitrogen was designated C_{1} and the hydrogens on C_{1} were designated H_{ta} and H_{10}. The next carton was designated C_{2} and the hydrogens on C_{2} were designated H_{2} and $\mathrm{H}_{3 \mathrm{~b}}$. All chemical shifts are reported in parts per million (ppm) relative to $\mathrm{Me}_{4} \mathrm{Si}$. Elemental analyses were obtained on a Perkin-Elmer 2400 CHN elemental analyzer. Mass spectra were recorded on a VG 70-250S mass spectrophotometer.

Table 2
Selected bond lengths (A), bond angles $\left(^{\circ}\right.$) and torsion angles (${ }^{\circ}$) in complex 8 b

$\mathrm{Re}-\mathrm{N}(1)$	1.76.3(9)	O(1)-N(1)	1.219111
$\mathrm{Re}-\mathrm{N}(2)$	$2.198(9)$	O2) C(10)	$1.23 \times(14)$
Re-C(10)	$2.073(11)$	C(10) (C11)	$1.509(16)$
$N(1)=R_{e}-N(2)$	$101.304)$	$\mathrm{Re} \cdot \mathrm{N}(1)-\mathrm{O}(1)$	$177.8(8)$
$\mathrm{N}(1)-\mathrm{Re}-\mathrm{Cl} 10)$	94,4(4)	Re (C 10$)-\mathrm{O}(2)$	123.048)
$N(2)-\mathrm{Re}$ C(10)	89.4(4)	Re-C(10)-C(11)	120.1(8)
$\mathrm{N}(1)-\mathrm{Re}-(10)-(11)$	5.315)	C(1)-Re-(Y) $101-\mathrm{O}(2)$	-3.065)
C(1)-Re-C(10)-C(11)	-178.6(3)	C(6)-C(1)-C(2)-C(3)	$16.3 .8(13)$
$N(3)-\mathrm{Re}-\mathrm{C}(1)-\mathrm{C}(6)$	-0.7(5)	C(6)-C(1)-C(5)_C(4)	-163.4(13)
N(1)-Re-(10)-O2)	$-179.2(9)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$2.7(6)$

4.1. Preparation of $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Re}(\mathrm{NO})-}$ (CO)H (3)

To an ice-water cooled, stirred, pale yellow solution of tricarbonyl $1(10.38 \mathrm{~g}, 25.5 \mathrm{mmol})$ in acetonitrile (200 ml) was added white powders of $\mathrm{NOBF}_{4}(6.2 \mathrm{~g}$, 53.4 mmol) portionwise over 5 min . After stirring for another 15 min , acetonitrile was evaporated under reduced pressure. The residue was then dissolved with acetone (50 ml). THF (200 ml) was added to precipitate the desired nitrosyl complex. Powders were collected and washed twice with THF ($100 \mathrm{ml} \times 2$), giving 12.4 g of the complex 2 as brown powder. IR $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $2111 \mathrm{~s}, 2056 \mathrm{~s}, 1819 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{COCD}_{3}, 300$ MHz): $\delta 6.69(2 \mathrm{H}, \mathrm{t}, J=2.3 \mathrm{~Hz} . \mathrm{Cp}-\mathrm{Hs}), 6.49(2 \mathrm{H}, \mathrm{t}$, $J=2.3 \mathrm{~Hz}, \mathrm{Cp}-\mathrm{Hs}), 3.72-3.65(2 \mathrm{H}, \mathrm{m}), 3.40-3.34$ $(2 \mathrm{H}, \mathrm{m}), 3.14(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 75\right.$ $\mathrm{MHz}): \delta 182.7(\mathrm{CO} \times 2)$, $115.6(\mathrm{C}, \mathrm{Cp}), 96.3(\mathrm{CH} \times 2$, $\mathrm{Cp}), 95.0(\mathrm{CH} \times 2, \mathrm{Cp}), 58.8\left(\mathrm{CH}_{2}\right), 44.2\left(\mathrm{CH}_{3} \times 2\right)$, $23.6\left(\mathrm{CH}_{2}\right)$.

Complex 2 was dissolved with wet acetone (250 ml , 1% water). Triethylamine (300 ml) was then added at room temperature. After stirring for 30 min , solvents were evaporated to dryness. The residue was flash chromatographed [10] on silica gel, using 30% followed by 50% then 80% of acetone in hexane as eluents. The first yellow-orange band was collected and evaporated to provide $7.6 \mathrm{~g}(78 \%)$ of hydride 3 as an orange liquid. TLC (silica gel): $R_{\mathrm{f}}=0.30$ (acetone). IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 1969s. $1692 \mathrm{~s} \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): δ $5.60-5.56$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 5.52-5.48$ ($\mathrm{H}, \mathrm{m} . \mathrm{Cp}-\mathrm{H})$, $5.45-5.41$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 5.40-5.36(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H})$, $2.69-2.61(2 \mathrm{H}, \mathrm{m}), 2.53-2.45(2 \mathrm{H}, \mathrm{m}), 2.32(6 \mathrm{H}, \mathrm{s})$, -8.33 (1H. s. $\mathrm{Re}-\mathrm{H}$). 'H NMR ($\mathrm{Cl}_{1} \mathrm{COCD}_{3}, 200$ MH2): $85.86-5.84(111, \mathrm{~m}, \mathrm{Cp} \mathrm{H}), 5.77=5.75(1 \mathrm{H}, \mathrm{m}$, $\mathrm{Cp}-\mathrm{H}), 5.63-5.57(2 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{Hs}), 2.73-2.65(2 \mathrm{H}$, $\mathrm{m}), 2.59-2.51(2 \mathrm{H}, \mathrm{m}), 2.31(6 \mathrm{H}, \mathrm{s}),=8.28$ (1H.s. $\mathrm{Re}-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}, \mathrm{COCD}_{3}, 50 \mathrm{MHz}$) : $\delta 210.4$ (CO). 112.6 (C, Cp), $89.1(\mathrm{CH} \times 2, \mathrm{Cp}), 87.1(\mathrm{Cll}, \mathrm{Cp})$, $87.0(\mathrm{CH}, \mathrm{Cp}), 61.4\left(\mathrm{CH}_{2}\right), 45.1\left(\mathrm{CH}_{3} \times 2\right), 26.3\left(\mathrm{CH}_{2}\right)$. Anal. Found: C, 31.22; $\mathrm{H}, 3.65 ; \mathrm{N}, 7.58 . \mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Re}$ Calc.: C, 31.49; H, 3.96; N, 7.34\%.
 (CO)R (4)

A powder of N -bromosuccinimide ($235 \mathrm{mg}, 1.32$ mmol) was added portionwise to a stirred orange solution of $3(500 \mathrm{mg}, 1.31 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ over 5 min . After stirring for an additional 20 min . the resulting red solution was concentrated and flash chromatographed on silica gel using acetone as an eluent. The first red band was collected and concentrated to provide 285 mg (47% yield) of bromide 4 as a red liquid. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1995 \mathrm{~s}, 1725 \mathrm{~s} \mathrm{~cm}{ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta^{5.86-83}(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 5.81-$
$5.78(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}) .5 .54(2 \mathrm{H}, \mathrm{t} . J=2.5 \mathrm{~Hz}, \mathrm{Cp}-\mathrm{Hs})$, 2.66-2.60 ($2 \mathrm{H}, \mathrm{m}$), $2.50-2.45(2 \mathrm{H}, \mathrm{m}), 2.26(6 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$): $\delta 200.3$ (CO), 118.8 (C. Cp), 91.4 (CH, Cp), 90.9 (CH, Cp), $90.2(\mathrm{CH}, \mathrm{Cp}), 89.9$ $(\mathrm{CH}, \mathrm{Cp}), 58.9\left(\mathrm{CH}_{2}\right), 45.0\left(\mathrm{CH}_{3} \times 2\right), 25.8\left(\mathrm{CH}_{2}\right)$. Mass spectra (FAB, ${ }^{787} \mathrm{Re}$), m / e (rel. int. (\%)): 381 ($\mathrm{M}^{+}-\mathrm{Br}, 100$), $351\left(\mathrm{M}^{+}-\mathrm{Br}-\mathrm{NO}, 25\right)$. Anal. Found: C , 26.35; H, 2.95; $\mathrm{N}, 5.81 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{Re}$ Calc.: C , 26.09; H, 3.06; N, 6.08\%.
4.3. Preparation of $\left(\eta^{j}: \eta^{l}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{\left(\mathrm{CH}_{3}\right)_{2}} \mathrm{Re}\right.$ (NO) $(\mathrm{CO})]^{+} \mathrm{BF}_{4}^{-}(5 a)$

Bromide 4 ($285 \mathrm{mg}, 0.62 \mathrm{mmol}$) was dissolved with $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{ml})$. A solution of silver tetrafluoroborate in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{ml} \times 0.25 \mathrm{M}, 0.62 \mathrm{mmol})$ was added at room temperature. After stirring for 30 min , the resulting cloudy solution was filtered through Celite. The yellow solids after concentration were recrystallized from acetone and THF, giving 215 mg (74% yield) of 5 a as a yellow-orange solid. M.p. $245^{\circ} \mathrm{C}$ (dec.): IR $\left(\mathrm{CH}_{3} \mathrm{CN}\right): 2006 \mathrm{~s}, 1743 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right.$, 200 MHz): $\delta 6.87-6.84(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 6.81-6.77$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), 6.29-6.26 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), $5.83-5.80$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), $3.98-3.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1} \mathrm{~s}\right), 3.73(3 \mathrm{H}, \mathrm{s})$. $3.48(3 \mathrm{H}, \mathrm{s}), 3.06-2.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2 \mathrm{a}}\right), 2.73$ ($1 \mathrm{H}, \mathrm{dt}$, $J=14.7,6.0 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{p}}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 200 \mathrm{MHz}\right)$: δ 6.52-6.48 (2H, m, Cp-Hs), 5.93-5.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-$ H), $5.54-5.50(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 3.69-3.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1} \mathrm{~s}\right)$. $3.50(3 \mathrm{H}, \mathrm{s}), 3.26(3 \mathrm{H}, \mathrm{s}), 2.74$ ($1 \mathrm{H} . \mathrm{dt}, J=14.8 .6 .6$ $\left.\mathrm{Hz}, \mathrm{H}_{2 \mathrm{a}}\right), 2.48\left(1 \mathrm{H}, \mathrm{dt}, J=14.8,6.0 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{~b}}\right) .{ }^{13} \mathrm{C}$ NMR (CD ${ }_{3} \mathrm{CN}, 50 \mathrm{MHz}$): $\delta 197.9$ (CO), 136.6 (C, Cp), $95.6(\mathrm{CH}, \mathrm{Cp}), 92.0(\mathrm{CH}, \mathrm{Cp}), 89.1(\mathrm{CH}, \mathrm{Cp}), 88.0$ (CH, Cp). $83.0\left(\mathrm{CH}_{2}\right), 65.2\left(\mathrm{CH}_{4}\right) .61 .1\left(\mathrm{CH}_{3}\right), 25.6$ $\left(\mathrm{CH}_{2}\right)$. Anal. Found: C. 25.93 : H, 2.98 ; N. 5.85. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{ReBF}_{4}$ Calc.: C. 25.70; $\mathrm{H}, 3.02 ; \mathrm{N}, 6.00 \%$.

4.4. Preparation of $\left./ \eta^{5}: \eta^{\prime} \cdot \mathrm{C}_{9} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{s}\right)_{2}$ Re. (NO)(CO) $)^{+} \mathrm{BPh}_{3}^{-}$(5b)

White powders of sodium tetraphenylborate (120 mg , 0.35 mmol) were added to a yellow solution of complex $5 a(130 \mathrm{mg}, 0.28 \mathrm{mmol})$ in methanol (10 ml) at room temperature. After stirring for 5 min , pale yellow powders were collected centrifugally and washed twice with methamol to give a quantitative yield of 5b. Single crystals of $\mathbf{5 b}$ were obtained by dissolving the pale yellow powders of $\mathbf{5 b}$ in hot acetone and allowing it to stand in a refrigerator overnight. Orange crystals were obtained with the following properties. M.p. $190^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{COCD}_{3}, 200 \mathrm{MHz}$): $\delta 7.37-7.28$ ($8 \mathrm{H}, \mathrm{m}$) , $6.92(8 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$), 6.81-6.72 ($6 \mathrm{H}, \mathrm{m}$, Ph and $2 \mathrm{Cp}-\mathrm{Hs}$), $6.24-6.20(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 5.81-5.77$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 3.96-3.89(2 \mathrm{H}, \mathrm{m}, \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}, \mathrm{s})$, 3.47 ($3 \mathrm{H}, \mathrm{s}$), $2.95\left(1 \mathrm{H}, \mathrm{dt}, J=14.7,6.6 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{a}}\right.$), 2.70 ($1 \mathrm{H}, \mathrm{dt}, J=14.7,6.0 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{~b}}$).
4.5. Crystal structure of $/ \eta^{5}: \eta^{\prime} \cdot \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$ $\left.\left(\mathrm{CH}_{3}\right)_{2} \operatorname{Re}(\mathrm{NO})(\mathrm{CO})\right]^{+} \mathrm{BPh}_{\dot{+}}^{-}(5 b)$

A single crystal of 5b was obtained by cooling a hot acetone solution of $\mathbf{5 b}$ in a refrigerator overnight. Diffraction measurements were made on an Enraf-Nonius CAD-4 diffractometer using graphite monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71069 \AA$) in the $\theta-2 \theta$ scan mode. Unit cell dimensions were obtained by least-squares refinement with 25 centered reflections for which $20.24^{\circ}<2 \theta<36.00^{\circ}$. The highest peak of the last difference map ($2.710 \mathrm{e}^{-3}$) is in the neighborhood of the rhenium atom ($1.124 \AA$). Other crystal data and refinement details are listed in Table 3. Atomic coordinates are listed in Table 4.
4.6. Preparation of $\eta^{5}: \eta^{\prime}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{\left(\mathrm{CH}_{3}\right)_{2} \text { Re- }}$ (NO) Br (6)

To a stirred red solution of bromide 4 ($402 \mathrm{mg}, 0.87$ mmol) in acetone (15 ml) at $0^{\circ} \mathrm{C}$ was added anhydrous $\left.\left(\mathrm{CH}_{3}\right)\right)_{3} \mathrm{NO}(78 \mathrm{mg}, 1.04 \mathrm{mmol})$ in several portions over 3 min . After stirring at $0^{\circ} \mathrm{C}$ for an additional 30 min , the resulting green solution was transferred to a short silica gel column ($1.8 \mathrm{~cm} \times 22 \mathrm{~cm}$) and eluted with 5% followed by 20% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A green band was collected and concentrated to give green powders of 6 ($288 \mathrm{mg}, 76 \%$ yield). The solubility of 6 in acetone is
only moderate. Other physical properties are as follows. TLC: $R_{\mathrm{f}}=0.86$ (silica gel, 30% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1637 \mathrm{~s} \mathrm{~cm}{ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{COCD}_{3}, 300$ $\mathrm{MHz}): \delta 6.59-6.58(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 6.28-6.27(1 \mathrm{H}, \mathrm{m}$, Cp-H), $5.03-5.01(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 3.90-3.88(1 \mathrm{H}, \mathrm{m}$, $\mathrm{Cp}-\mathrm{H}), 3.65\left(\mathrm{lH}\right.$, ddd, $\left.J=11.8,7.2,5.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{la}}\right), 3.46$ (1 H , ddd, $J=11.8,6.8,5.3 \mathrm{~Hz}, \mathrm{H}_{1 \mathrm{~b}}$), $3.25(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 3.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right), 2.54(1 \mathrm{H}$, ddd, $J=$ $14.3,7.2,5.3 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{a}}$), 2.21 (1 H, ddd, $J=14.3,6.8$, $5.4 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{~b}}$). Mass spectra ($\mathrm{FAB},{ }^{187} \mathrm{Re}$), m / e (rel. int. (\%)): $433\left(\mathrm{M}^{+}, 10\right)$. Anal. Found: C, 25.25; H, 3.22; N , 6.25. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{ORe}$ Calc.: $\mathrm{C}, 25.00 ; \mathrm{H}, 3.26 ; \mathrm{N}$, 6.48%.

4.7. Preparation of $\left(\eta^{5}: \eta^{l}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)\right.$, Re(NO) $\left.\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{+} \mathrm{BF}_{4}^{-}$(7)

A solution of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NO}(110 \mathrm{mg}, 1.40 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{ml})$ was added dropwise to a stirred yellow solution of $5 \mathrm{a}(650 \mathrm{mg}, 1.39 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ over 10 min . After stirring for an additional $10 \mathrm{~min}, \mathrm{CH}_{3} \mathrm{CN}$ was evaporated under reduced pressure to about 2 ml ; $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ was then added. Some precipitations were filtered off through Celite. Hexane (10 ml) was added and the resulting solution was allowed to stand in a refrigerator overnight. Red crystals were collected. Hexane was added to the mother liquid and allowed for more crystallization in a refrigerator. Crystal: were

Table 3
Crystal tata and details of the sruecure detefmination of complexes st and sio

Complex	56	8 b
Formula	$\mathrm{Ca}_{44} \mathrm{H}_{4} \mathrm{BN}_{2} \mathrm{O}_{2} \mathrm{Re}$	$\mathrm{C}_{11} \mathrm{H}_{1}, \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Re}$
Moleculap weight	$699.67{ }^{\text {6 }}$	305.47
Crystal system	monoclinic	monoclinic
Space group	$P 2_{1} / 17$	$\mathrm{P}_{2} / 1 / 1$
a(A)	10.2654(10)	11.7268(13)
$b(A)$	$27.7013(10)$	7.4297(7)
$c(A)$	10.5097(10)	14.5777(21)
β (${ }^{\circ}$)	90.554(5)	106.154(10)
Cell volume (A^{\prime})	2988.54)	1219.82)
Bi $D_{\text {cald }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	4: 1.555	$4: 2.153$
P(000)	1392	752
Crystal size (mm')	$0.50 \times 0.38 \times 0.06$	$0.25 \times 0.25 \times 0.28$
Scan range (${ }^{\circ}$)	$0.65+0.46 \tan (0)$	$0.70+0.35 \tan (\theta)$
2θ range (${ }^{(9)}$	+-45	4 -50
h. , $^{\text {a range }}$	$(-12: 12),(0 ; 32),(0 ; 12)$	(-13: 13), (0: 8), (0; 17)
$\mu\left(\mathrm{cm}{ }^{\prime \prime}\right.$)	41.52	100.8 (3)
No, of collected reflections	5551	2258
No. of unique retlections	52.45	2147
No. of reflections with $1>3 \mathbf{5 0}(1)$	3987	1786
No. of refined parameters	361	146
Weighting seheme	$1 / \sigma^{2}(F)$	1/8' $0^{2}(F)$
Final R, R_{n}	0.031, 0.039	0.030, 0.047
GOF	1.64	2.49
Maximum shift/er ratio	0.0016	0.012
Min, max difference map (e λ^{-3})	-0.650, 2.710	-1.180, 2.510

Table 4
Atomic coordinates and $\boldsymbol{B}_{\text {iso }}$ of $\mathbf{5 b}$

Atom	x	y	$=$	$B_{\text {iso }}$
Re	$0.7961612)$	0.11414 (1)	0.05055(2)	3.28(1)
B	0.7622(6)	$0.3674(2)$	0.1047(6)	2.7(2)
N(1)	0.8274(6)	0.0562(2)	-0.0276(5)	5.3(3)
N(2)	0.8379(4)	0.0925(2)	0.2459(4)	3.3(2)
O(1)	1.0523(5)	$0.1574(2)$	-0.0209(5)	7.6(3)
O(2)	0.8428(6)	0.0198(2)	-0.0811(5)	7.4(3)
C(1)	0.9592(6)	$0.1389(2)$	0.0119 (6)	4.1(3)
C(2)	$0.6293(6)$	0.1487(2)	0.1577(6)	4.2(3)
C(3)	0.5758(6)	$0.1180(2)$	0.0649(6)	4.3(3)
C(4)	$0.6133(6)$	$0.1353(3)$	-0.0576(6)	4.8(3)
C(5)	0.6908(7)	0.1772(2)	-0.0377(6)	5.3(3)
C(6)	0.6991(7)	0.1857(2)	0.0967(7)	4.7(3)
C(7)	0.6342(7)	$0.1360 \times 3)$	$0.2993(6)$	5.2(3)
C(8)	0.7122(7)	0.0908(3)	$0.3175(6)$	4.8(3)
C(9)	0.9292(6)	$0.1270(2)$	$0.3130(6)$	$4.1(3)$
C(10)	0.9005(8)	0.0442(2)	0.2613(7)	5.7(4)
C(11)	0.6068(5)	0.3678(2)	$0.1305(5)$	3.0(2)
C(12)	0.5310(6)	0.3254(2)	$0.1303(6)$	4.0(3)
C(13)	0.3964(7)	0.3265(3)	0.1417(7)	$5.3(3)$
C(14)	$0.3317(7)$	0.3698(4)	$0.1539(6)$	5.7(4)
C(15)	$0.3999(7)$	0.4113(3)	$0.1547(6)$	5.1(3)
C(16)	0.5351(6)	$0.4106(2)$	$0.1428(5)$	3.9(3)
C(21)	$0.7756(5)$	0.3691(2)	-0.0514(5)	3.3(2)
C(22)	0.7847(6)	0.3283(2)	$-0.1274(6)$	4.5(3)
C(23)	0.7858(7)	0.3303(3)	-0.2604(7)	6.6(4)
C(24)	$0.77748)$	0.3747(4)	-0.3204(7)	7.3(5)
C(25)	$0.7665(7)$	0.4149(3)	-0.2500(8)	6.2(4)
C(26)	$0.7660(6)$	0.4128(2)	-0.1184(6)	$4.5(3)$
C(31)	$0.8381(5)$	0.3203(2)	$0.1682(5)$	$3.1(2)$
C(32)	$0.9540(6)$	$0.3017(2)$	$0.1225(6)$	$4.2(3)$
C(33)	$1.0248(7)$	0.2665(2)	0.1857(8)	5.7(4)
C(34)	$0.9854(8)$	0.2497(2)	0.3021 (8)	$5.6(4)$
C(35)	0,8718(9)	$0.2668(2)$	$0.3517(6)$	5.4(4)
C(36)	0,7986(6)	$0.3016(2)$	0.2850(6)	4.13)
C(4)	0.8400)(5)	$0.4123(2)$	$0.1738(5)$	3.1 (2)
(Ha_{3})	(0,9517(6)	$0.43+4 \times 2)$	$0.1230(6)$	4.0.3)
C(43)	$1.0244(7)$	0.4683(2)	$0.1891(7)$	S.3(3)
C(44)	$0.9873(7)$	0.4816(${ }^{\text {2 }}$)	0.310k(7)	$5.2(1)$
C(45)	$0.8808(7)$	$0.4615(2)$	$0.3638(6)$	4.5(3)
C(46)	0.8079 (6)	0.4272(2)	$0.2975(5)$	$3.8(3)$

combined to give a total of 420 mg (62%) of complex 7. M.p. $121-122^{\circ} \mathrm{C}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $1677 \mathrm{~cm}^{-1}$. H NMR ($\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}, 300 \mathrm{MHz}\right): \delta 6.84-6.82(1 \mathrm{H}, \mathrm{m}$, $\mathrm{Cp}-\mathrm{H}), 6.20-6.18$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), $5.69-5.67$ ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{Cp}-\mathrm{H}), 4.63-4.61(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 3.80(1 \mathrm{H}, \mathrm{dt}, J=12$, $5.7 \mathrm{~Hz}, \mathrm{H}_{1 \mathrm{a}}$), $3.69\left(1 \mathrm{H}, \mathrm{ddd} . J=12,8.3,5.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{If}}\right)$, $3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CN}\right), 3.11$ (3 H, s, $\mathrm{N}-\mathrm{CH}_{3}$), $2.62\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14.5,5.7 \mathrm{~Hz}, \mathrm{H}_{22 \mathrm{a}}\right.$), 2.42 (1 H, ddd, $J=14.5,8.3,5.7 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{~b}}$). ${ }^{1.3} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 75 \mathrm{MHz}\right): \delta 141.4$ (C, CN), 132.6 (C. Cp). $97.9(\mathrm{CH}, \mathrm{Cp}), 86.0(\mathrm{CH}, \mathrm{Cp}), 82.9(\mathrm{CH}, \mathrm{Cp}), 81.6$ $\left(\mathrm{CH}_{2}\right), 79.9(\mathrm{CH}, \mathrm{Cp}), 60.8\left(\mathrm{CH}_{3}\right), 56.0\left(\mathrm{CH}_{3}\right), 25.8$ $\left(\mathrm{CH}_{2}\right), 4.3\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CN}\right)$. Mass spectra ($\mathrm{FAB},{ }^{187} \mathrm{Re}$), m / e (rel. int. (\%)): $394\left(\mathrm{M}^{+}-\mathrm{BF}_{4}, 100\right), 353\left(\mathrm{M}^{+}-\right.$ $\mathrm{BF}_{4}-\mathrm{CH}_{3} \mathrm{CN}, 52$). Anal. Found: C, 25.65; H, 3.45; N, 8.95. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OReBF}_{4}$ Calc.: C, 25.51; H, 3.57; N , 8.75\%.
4.8. General procedure for the preparation of $\eta^{3}: \eta^{1}$. $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{\left(\mathrm{CH}_{3}\right)}\right)_{2} \mathrm{Re}(\mathrm{NO}) \mathrm{COR}$ (8) ($R=n$-butyl. methyl, ethyl, isopropyl, benzyl)

Over a period of 3 min , a solution of alkylmetal reagent (n -butyllithium. methylmagnesium chloride, ethylmagnesium bromide, isopropylmagnesium chloride, benzylmagnesium chloride) (1.5 mmol) was added to a stirred suspension of 5 ($560 \mathrm{mg}, 1.2 \mathrm{mmol}$) in THF (15 ml) at $-78^{\circ} \mathrm{C}$. After addition was complete, the cold bath was removed and the solution allowed to stir at room temperature for $20-30 \mathrm{~min}$. The resulting orange solution was concentrated under reduced pressure. The residue was then dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 ml) and flash column chromatographed on neutral alumina (activity V) upon elution with EIOAc. The first yellow or orange band was collected and concentrated to provide the desired product in $56-78 \%$ yield.

4.8.1. $\left.\quad \eta^{5}: \eta^{\prime}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{2} \mathrm{CH}_{3}\right)_{2} \mathrm{Re}\left(\mathrm{NO}_{2} \mathrm{COCH}_{2}\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}(8 a)$

Orange liquid (65%). IR $\left(\mathrm{CH}_{3} \mathrm{Cl}_{2}\right): 1618 \mathrm{~s}, 1519 \mathrm{~m}$, $1456 \mathrm{w} \mathrm{cm}^{-1} .^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $86.12-6.10$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), $5.56-5.54$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), $4.80-4.78$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), $4.56-4.54$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), 3.76-3.63 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{ta}}\right), 3.31-3.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2 \mathrm{a}}\right), 3.23(3 \mathrm{H}, \mathrm{s}$. $\left.\mathrm{N}-\mathrm{CH}_{3}\right)$. 3.14-3.00 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1 \mathrm{~b}}$ and $\mathrm{H}_{2 \mathrm{~b}}$), $3.03(3 \mathrm{H}, \mathrm{s}$, $\mathrm{N}-\mathrm{CH}_{3}$), $2.54-2.44$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2^{\prime} \mathrm{a}}$), $2.28-2.16$ ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}_{2^{\prime} \mathrm{b}}$), 1.61-1.51 (2H, m, $\mathrm{H}_{y^{\prime}}$), 1.43-1.29 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}$), 0.91 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}_{5}$). ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta$ 263.0 ($\mathrm{CO}, \mathrm{C}_{1}$). 127.9 (C, Сp), 98.1 (CH, Сp). 88.6 $(\mathrm{CH}, \mathrm{Cp}), 81.7(\mathrm{CH}, \mathrm{Cp}), 81.0(\mathrm{CH}, \mathrm{Cp}), 78.7\left(\mathrm{CH}_{2}\right.$. $\left.\mathrm{C}_{1}\right), 63.0\left(\mathrm{CH}_{2}, \mathrm{C}_{2}\right), 61.8\left(\mathrm{CH}_{3}, \mathrm{~N}-\mathrm{CH}_{3}\right), 58.6\left(\mathrm{CH}_{3}\right.$. $\left.\mathrm{N} \mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{2}, \mathrm{C}_{4}\right), 25.1\left(\mathrm{CH}_{2}, \mathrm{C}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right.$, C_{4}), $14.1\left(\mathrm{CH}_{3}, \mathrm{C}_{5}\right)$. Mass spectra ($\mathrm{FAB},{ }^{187} \mathrm{Re}$), m / e (rel. int. (\%)): $439\left(\mathrm{M}^{+}+1,20\right), 381\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 100\right)$, $351\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}=\right.$ NO, 96). Anal, Found: C. 38.25 ; H , 5.35; N. 6.52. $\mathrm{C}_{14} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{~N}_{2} \mathrm{Re}$ Calc.: C. 38.43 ; H. 5.30); N, 6.40\%.

4.8.2. $\left.\quad \eta^{5}: \eta^{\prime}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{\left(\mathrm{CH}_{3}\right)}\right)_{2} \mathrm{Re}(\mathrm{NO}) \mathrm{COCH}_{3}$

 (8b)Orange crystal (74%). M.p. $156^{\circ} \mathrm{C}$ (dec.). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1616 \mathrm{~s}, 1517 \mathrm{~m}, 1455 \mathrm{w} \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 6.14-6.12(1 \mathrm{HI}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 5.56$ 5.54 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), 4.85-4.83 (1 $\mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), $4.59-$ 4.57 ($1 \mathrm{HI}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), 3.69 (1 HI, ddd, $J=11.8,10.8 .5 .3$ $\mathrm{Hz}, \mathrm{H}_{13}$), $3.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right.$), 3.13 (1 H , ddd, $J=11.8$. $\left.5.1,3.7 \mathrm{~Hz}, \mathrm{H}_{10}\right), 3.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right), 2.82(3 \mathrm{H}, \mathrm{s}$, $\left.-\mathrm{COCH}_{3}\right), 2.50\left(1 \mathrm{H}, \mathrm{ddd}, J=14.5,10.8,5.1 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{a}}\right)$. 2.21 (1 H , ddd, $J=14.5,5.3,3.7 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{~b}}$). ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right.$. 75 MH): $\delta 259.9$ (CO, C ${ }^{1}$), 128.2 (C, Cp), 98.0 (CH. $\mathrm{Cp}), 88.8(\mathrm{CH}, \mathrm{Cp}), 82.0(\mathrm{CH}, \mathrm{Cp}), 81.6(\mathrm{CH}, \mathrm{Cp}), 78.8$ $\left(\mathrm{CH}_{2}, \mathrm{C}_{1}\right), 61.6\left(\mathrm{CH}_{3}, \mathrm{~N}-\mathrm{CH}_{3}\right), 58.4\left(\mathrm{CH}_{3}, \mathrm{~N}-\mathrm{CH}_{3}\right)$, $50.1\left(\mathrm{CH}_{3}, \mathrm{C}_{2}\right), 25.0\left(\mathrm{CH}_{2}, \mathrm{C}_{2}\right)$. Mass spectra (FAB , ${ }^{187} \mathrm{Re}$), m / e (rel. int. (\%)): $397\left(\mathrm{M}^{+}+1,36\right), 381$
$\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 100\right), 351\left(\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{NO}, 40\right)$. Anal. Found: C. 33.35; H, 4.38; N, 7.15. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Re}$ Calc.: C , 33.41; H, 4.33; N, 7.08\%.
4.8.3. $\quad \eta^{5}: \eta^{\prime}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Re}(\mathrm{NO})$ $\mathrm{COCH}_{2} \mathrm{CH}_{3}$ (8c)

Yellow powder (78\%). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1615 \mathrm{~s}, 1521 \mathrm{~m}$, $1456 \mathrm{w} \mathrm{cm}^{-1} .{ }^{\text {' }} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.14-6.12$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), $5.56-5.54$ ($1 \mathrm{H}, \mathrm{m}$ Cp-H), 4.81-4.79 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), $4.57-4.55$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}$), 3.70 (1 H , $\left.\mathrm{td}_{4} J=11.3,5.3 \mathrm{~Hz}, \mathrm{H}_{1 \mathrm{a}}\right), 3.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right)$, 3.26-3.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}$) , 3.11 (1 H, ddd, $J=11.8,5.2$, $\left.3.7 \mathrm{~Hz}, \mathrm{H}_{1 \mathrm{~b}}\right), 3.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right), 2.49(1 \mathrm{H}$, ddd, $J=14.4,10.8,5.2 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{a}}$), 2.20 (1 H , ddd, $J=14.4$, $\left.5.3,3.7 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{~b}}\right), 1.03\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 263.2$ (CO, C_{1}), 128.0 (C, Cp), $98.1(\mathrm{CH}, \mathrm{Cp}), 88.6(\mathrm{CH}, \mathrm{Cp}), 81.8(\mathrm{CH}, \mathrm{Cp}), 80.9$ (CH, Cp), $78.7\left(\mathrm{CH}_{2}, \mathrm{C}_{1}\right), 61.7\left(\mathrm{CH}_{3}, \mathrm{~N}-\mathrm{CH}_{3}\right), 58.6$ $\left(\mathrm{CH}_{3}, \mathrm{~N}-\mathrm{CH}_{3}\right), 55.8\left(\mathrm{CH}_{2}, \mathrm{C}_{2}.\right), 25.1\left(\mathrm{CH}_{3}, \mathrm{C}_{2}\right), 10.3$ $\left(\mathrm{CH}_{3}, \mathrm{C}_{3}\right)$. Mass spectra (FAB, ${ }^{187} \mathrm{Re}$), m / e (rel. int. (\%)): $411\left(\mathrm{M}^{+}+1,34\right), 381\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 100\right), 351$ $\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{NO}, 30\right)$. Anal. Found: C. 35.32: H. 4.65; N. 6.60, $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Re}$ Calc.: C, 35.20; $\mathrm{H}, 4.68 ; \mathrm{N}$, 6.84%.

4.8.4. $\eta^{5}: \eta^{\prime} \cdot \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Re}(\mathrm{NO}) \mathrm{COCH}-$ $\left(\mathrm{CH}_{3}\right)_{3}(8 d)$

Orange-brown liquid (68%). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 1614 s . $1522 \mathrm{~m}, 1450 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) ; \delta$ $6.14=6.12(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 5.57=5.55(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}=\mathrm{H})$, $4.79-4.75(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 4.56-4.54(1 \mathrm{H}, \mathrm{m}, \mathrm{C} \boldsymbol{\mathrm { H }} \mathrm{H})$, 3.71 (1H, td, $J=11.3,5.4 \mathrm{~Hz}, \mathrm{H}_{1 \mathrm{~A}}$), 3.69 (1 H, heptet. $\left.J=6.8 \mathrm{~Hz}, \mathrm{H}_{2}\right)_{3} 3.23\left(3 \mathrm{H}_{4} \mathrm{~s}, \mathrm{~N}=\mathrm{CH}_{1}\right), 3.09(1 \mathrm{H}, \mathrm{ddd}$. $J=11.8,5.1,3.6 \mathrm{~Hz}_{1} \mathrm{H}_{15}$), $3.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH}_{1}\right), 2.49$ ($1 \mathrm{H}, \mathrm{ddd}, J=14.5,11.0,5.1 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{n}}$), 2.20 (1H, ddd, $\left.J=14.5,5.4,3.6 \mathrm{~Hz}, \mathrm{H}_{3 \mathrm{H}}\right), 1.05(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}$, isopropyl $\left.=\mathrm{CH}_{3}\right), 1.02(3 \mathrm{H}, \mathrm{d}, J \approx 6.8 \mathrm{~Hz}$, isopropyl=o $\left.\mathrm{CH}_{3}\right),{ }^{17} \mathrm{C}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) ; 8267.5\left(\mathrm{CO}, \mathrm{C}_{\mathrm{p}}\right), 127.8$ (C, Cp), 97.8 (CH, Cp), 88.6 (CH, Cp), $81.5(\mathrm{CH}, \mathrm{Cp})$, $80.4(\mathrm{CH}, \mathrm{Cp}), 78.6\left(\mathrm{CH}_{2}, \mathrm{C}_{1}\right), 61.8\left(\mathrm{CH}_{3}, \mathrm{~N}-\mathrm{CH}_{3}\right)$, $59.1\left(\mathrm{CH}, \mathrm{C}_{2}\right), 58.9\left(\mathrm{CH}_{3}, \mathrm{~N}-\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{2}, \mathrm{C}_{2}\right)$, $19.9\left(\mathrm{CH}_{3}, \mathrm{C}_{y^{\prime}}\right), 18.8\left(\mathrm{CH}_{3}, \mathrm{C}_{y_{n}}\right)$. Mass spectra (FAB, $\left.{ }^{187} \mathrm{Re}\right), \mathrm{m} / \mathrm{e}$ (rel. int. $\left.(\%)\right) ; 425\left(\mathrm{M}^{+}+1,20\right), 381$ $\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}, 100\right), 351\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{NO}, 25\right)$. Anal. Found: C, 37.12; H, 5.02; N. 6.44, $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Re}$ Calc.: C. $36.87, \mathrm{H}, 5.00$; N, 6.61%.

4.8.5. $\left.\eta^{3} ; \eta^{\prime}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{N(CH}_{3}\right)_{2} \mathrm{Re}(\mathrm{NO}) \mathrm{COCH}_{2} \mathrm{Ph}$ (8e)

Orange needles (56\%). M.p. $154^{\circ} \mathrm{C}$ (dec.). IR $\left(\mathrm{CH}_{3} \mathrm{Cl}_{3}\right): 1618 \mathrm{~s}, 1534 \mathrm{~m}, 1451 \mathrm{w} \mathrm{cm}{ }^{-1}, 1 \mathrm{H}\left(\mathrm{CDCl}_{3}\right.$. 300 MHz): $\delta 7.40-7.37$ (2H, m, phenyl), $7.27-7.21$ (2H, m, phenyl), $7.13\left(1 \mathrm{H}, \mathrm{t}, J=7.2,2.1 \mathrm{~Hz}, \mathrm{H}_{6}\right.$), $5.88=5.68(1 \mathrm{H}, \mathrm{m}, \mathrm{Cp}-\mathrm{H}), 5.53(1 \mathrm{H}, \mathrm{dd}, J=3.8,2.4$ $\mathrm{Hz}, \mathrm{Cp}-\mathrm{H}), 4.77(1 \mathrm{H}, \mathrm{dd}, J=4.6,2,2 \mathrm{~Hz}, \mathrm{Cp}-\mathrm{H}), 4.54$ $(1 \mathrm{H}, \mathrm{dd}, J=4.5,2.6 \mathrm{~Hz}, \mathrm{Cp}-\mathrm{H}), 4.50(1 \mathrm{H}, \mathrm{d}, J=11.9$

Table 5
Atomic coordinates and $B_{\text {iso }}$ of $\mathbf{8 b}$

Atom	x	y	l $l$$l$	$B_{\text {iso }}$
Re	$0.50182(3)$	$0.04318(5)$	$0.24186(3)$	$2.36(2)$
$\mathrm{O}(1)$	$0.6231(8)$	$-0.1656(13)$	$0.1217(6)$	$5.0(4)$
$\mathrm{O}(2)$	$0.2432(7)$	$0.0782(12)$	$0.1658(7)$	$5.1(5)$
$\mathrm{N}(1)$	$0.5721(8)$	$-0.0787(12)$	$0.1692(6)$	$3.1(4)$
$\mathrm{N}(2)$	$0.5080(8)$	$0.3184(12)$	$0.1881(6)$	$3.1(4)$
$\mathrm{C}(1)$	$0.5241(11)$	$0.2176(16)$	$0.3770(7)$	$3.7(5)$
$\mathrm{C}(2)$	$0.4170(11)$	$0.1167(17)$	$0.3591(8)$	$3.8(6)$
$\mathrm{C}(3)$	$0.4456(12)$	$-0.0731(17)$	$0.3625(9)$	$4.4(6)$
$\mathrm{C}(4)$	$0.5719(12)$	$-0.0854(16)$	$0.3848(8)$	$4.0(6)$
$\mathrm{C}(5)$	$0.6195(11)$	$0.0924(17)$	$0.3955(7)$	$3.9(5)$
$\mathrm{C}(6)$	$0.5317(12)$	$0.4135(15)$	$0.3559(8)$	$4.0(6)$
$\mathrm{C}(7)$	$0.4699(13)$	$0.4450(18)$	$0.2554(9)$	$5.0(7)$
$\mathrm{C}(8)$	$0.4335(14)$	$0.3551(19)$	$0.0883(9)$	$5.9(8)$
$C(9)$	$0.6289(13)$	$0.3613(20)$	$0.1813(13)$	$6.8(9)$
$C(10)$	$0.3329(10)$	$0.0131(15)$	$0.1497(8)$	$3.2(5)$
$C(11)$	$0.3139(11)$	$-0.1030(17)$	$0.0618(8)$	$4.2(6)$

Hz , benzylic- H_{a}), $4.33(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}$, benzylic$\left.\mathrm{H}_{\mathrm{b}}\right), 3.63\left(1 \mathrm{H}\right.$, ddd, $\left.J=11.8,9.7,5.3 \mathrm{~Hz}, \mathrm{H}_{1 \mathrm{a}}\right), 3.10$ ($1 \mathrm{H}, \mathrm{dt}, J=11.8,5.0 \mathrm{~Hz}, \mathrm{H}_{1 \mathrm{~b}}$), $3.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right)$, $2.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right), 2.42$ (1H, ddd, $J=14.5,9.7,5.1$ $\left.\mathrm{Hz}, \mathrm{H}_{2 \mathrm{a}}\right), 2.17\left(1 \mathrm{H}, \mathrm{dt}, J=14.5,5.0 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{~b}}\right) .{ }^{13} \mathrm{C}$ $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 257.6(\mathrm{CO}), 138.2$ (C, phenyl), 129.9 ($\mathrm{CH} \times 2$, phenyl), $128.1(\mathrm{C}, \mathrm{Cp}), 128.0(\mathrm{CH} \times 2$. phenyl), 125.3 (CH, phenyl), $98.1(\mathrm{CH}, \mathrm{Cp}), 88.3(\mathrm{CH}$, Cp). $82.4(\mathrm{CH}, \mathrm{Cp}), 81.6(\mathrm{CH}, \mathrm{Cp}), 79.5\left(\mathrm{CH}_{3}, \mathrm{C}_{1}\right)$, $70.1\left(\mathrm{CH}_{2}\right.$, benzylic), $61.4\left(\mathrm{CH}_{3}, \mathrm{~N}-\mathrm{CH}_{3}\right), 58.6\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{N}=\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{3}, \mathrm{C}_{2}\right)$. Mass spectra ($\mathrm{FAB},{ }^{187} \mathrm{Re}$), m / e (rel, int. (\%)): $473\left(\mathrm{M}^{+}+1,8\right), 381\left(\mathrm{M}^{+}\right.$-benzyl, 100). $351\left(\mathrm{M}^{+}=\right.$beneyl-NO, 38). Amal. Found: C, 43.48; H, 4.55; $\mathrm{N}, 5.65 . \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Re}$ Calc.: C, 43.30; H , 4.49; N, 5.94%.

4.9. Crystal structure of $\left.\eta^{5}: \eta^{\prime}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{\left(C H_{3}\right.}\right)_{2}=$ $\mathrm{Re}(\mathrm{NO}) \mathrm{COCH}_{3}(8 b)$

A single crystal of 8 b was obtained by allowing a solution of $\mathbf{8 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane $(1: 5)$ to stand in a refrigerator overnight. Diffraction measurements were made on an Enraf-Nonius CAD-4 diffractometer using graphite monochromated Mo $K \alpha$ radiation ($\lambda=$ $0.71069 \AA$) in the $\theta-20$ scan mode. Unit cell dimensions were obtained by least-squares refinement with 25 centered reflections for which $15.04^{\circ}<2 \theta<31.94^{\circ}$. Other crystal data and refinement details are listed in Table 3. Atomic coordinates are listed in Table 5.

5. Supplementary material available

Tables of data collection parameters, bond lengths and bond angles, torsion angles, fractional atomic coordinates, and anisotropic thermal parameters for 5 b and 8b are available from T.-F.W.

Acknowledgements

We are grateful to the National Science Council of Taiwan for financial support.

References

[1] L.H. Pignolet, (́ed.), Homogeneous Caralysis with Metal Phosphine Complexes, Plenum Press, New York, 1983.
[2] (a) P. Jutzi, J. Dahlhaus and M.O. Kristen, J. Organomel. Chem., 450 (1993) Cl-C3; (b) T.F. Wang and Y.S. Wen, J. Organomet. Chem., 439 (1992) 155-162; (c) T.F. Wang, T.Y. Lee, J.W. Chou and C.W. Ong, J. Organomet. Chem., 423 (1992) 31-38; (d) T.F. Wang, T.Y. Lee, Y.S. Wen and L.K. Liu, J. Organomer. Chem., 403 (1991) 353-358; (e) D. Sellmann and J. Muller, J. Organomer. Chem., 281 (1985) 249-262; (f) D. Sellmann, J. Müller and P. Hofmann, Angew. Chem., Imt. Ed. Engl., 21 (1982) 691-692.
[3] (a) M.A. Dewey, Y. Zhou, Y. Lin and J.A. Gladysz, Organometallic:, 12 (1993) 3924-3932; (b) Y. Zhou, M.A. Dewey and J.A. Gladysz, Organometallics, 12 (1993) 39183923; (c) W.E. Buhro, B.D. Zwick, S. Georgiou, J.P. Hutchinson and J.A. Gladysz, J. Am. Chem. Serc., 110 (1988) 24272439.
[4] (a) N.Q. Mendez, J.W. Seyler, A.M. Arif and J.A. Gladysz, J.

Am. Chem. Sac., $1 / 5$ (1993) 2323-2334; (b) D.M. Datton, J.M. Femandez. K. Enterson, R.D. Larsen, A.M. Arif and J.A. Gladysz, J. Am. Chem. Soc., 112 (1990) 9198-9212.
[5] (a) W. Weng, T. Bartik, M.T. Johnson, A.M. Arif and J.A. Gladysz, Organometallics, 14 (1995) 889-897; (b) T.S. Peng and J.A. Gladysz, Organometallics, 14 (1995) 898-911; (c) E.J. O'Connor, M. Kobayashi, H.G. Floss and J.A. Gladysz, J. Am. Chem. Sac., 109 (1987) 4837-4844.
[6] (a) W.R. Cantrell, Jr., G.B. Richter-Addo and J.A. Gladysz, J. Organomet. Chem., 472 (1994) 195-204; (b) T.J. Johnson, A.M. Arif and J.A. Gladysz, Organometalics, 13 (1994) 31823193; (c) D.A. Knight, M.A. Dewey, G.A. Stark, B.K. Dennett, A.M. Arif and J.A. Gladysz, Organometallics, 12 (1993) 45234534; (d) T.J. Johnson, A.M. Arif and J.A. Gladysz, Organometallics, 12 (1993) 4728-4730; (e) M.A. Dewey, D.A. Knight, A.M. Arif and J.A. Gladysz, Chem. Ber., 125 (1992) 815-824; (f) M.A. Dewey, D.A. Knight, D.P. Klein, A.M. Arif and J.A. Gladysz, Inorg. Chem., 30 (1991) 4995-5002; (g) M.A. Dewey, A.M. Arif and J.A. Gladysz, J. Chem. Soc., Chem. Commun., (1991) 712-714; (h) M.A. Dewey, J.M. Bakke and J.A. Gladysz, Organometullic.s, 9 (1990) 1349-1351.
[7] T.F. Wang, J.P. Juang and K.J. Lin, Bull. Inst. Chem., Acad. Sin., 42 (1995) 41-48.
[8] J.R. Sweet and W.A.G. Graham, Orgunometallics, I (1982) 982-986.
[9] J.A. Soderquist and C.L. Anderson, Tetruhedron Lett., 27 (1986) 3961-3962.
[10] W.C. Still, M. Kahn and A. Mitra, J. Org. Chem., 43 (1978) 2923-2925.

[^0]: Corresponding author.

